
~ Pergamon 
Int. J. Multiphase Flow Vol. 23, No. 3, pp. 523-543, 1997 

~3 1997 Elsevier Science Ltd. All rights reserved 
Printed in Great Britain 

P I I :  S0301-9322(96)00081-X 0301-9322/97 $17.00 + 0.00 

ANALYTICAL SOLUTION FOR LAMINAR TWO-PHASE 
FLOW IN A FULLY ECCENTRIC C O R E - A N N U L A R  

C O N F I G U R A T I O N  

J, ROVINSKY, N. BRAUNER and D. MOALEM MARON 
Department of Fluid Mechanics, School of Engineering, Tel-Aviv University, Israel 

(Received 29 April 199& in revised form 17 October 1996) 

Abstract--Fully eccentric and concentric core annular flows represent two extremes which are of practical 
interest with regard to the performance of core flows. The fully eccentric configuration, which is obviously 
the problematic one, has been tackled herein by introducing a unipolar coordinate system, since the 
bipolar coordinate system fails to describe the flow field for this extreme. 

The analytical solution obtained yields the velocity profiles, wall and interfacial shear stresses and the 
resulting insitu holdup and pressure drop. The determination of the flow characteristics for fully eccentric 
flows is important as a bound to evaluate the effect of the core eccentricity in annular flows and as a 
complementary information to previous solutions of stratified flows with curved interface. 
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1. INTRODUCTION 

Fully eccentric core-annular  flows can be realized as an extreme configuration of  either stratified 
flow patterns or annular flow patterns (figure 1). The stratified and annular flows are considered 
basic flow configurations which are realized in a variety of  two-fluid systems. Analytical models 
for annular or stratified configuration are oftern the starting points for analyzing transitions to 
other possible flow patterns. As such, the stratified and annular flow patterns attain a continuous 
intensified interest f rom both the practical and theoretical points of  view. However, analytical 
solutions for both stratified and annular flows exhibit difficulties when converging to the 
configuration of fully eccentric core flow. Therefore, the fully eccentric configuration ought to be 
tackled directly. A brief review of relevant existing solutions for the various flow configurations 
encountered follows. 

Stratified layers may exhibit a plane or a curved interface. A plane interface is characteristic to 
gravity dominated systems as in the case in large scale air-water systems under earth gravitation. 
However, in two-fluid systems of small density differential (e.g. liquid-liquid, vapor-l iquid near 
the critical point), reduced gravity systems or capillary systems, surface phenomena become 
important,  and the interface demonstrates a curved shape (convex or concave). The controlling 
non-dimensional parameters are the fluids/wall wettability angle, c~ and the E6tv6s number. The 
latter represents the ratio between surface and gravity forces (Brauner 1990; Rovinsky et  al .  1995): 

20'12 
ev = (p2 --  p ~ ) g R  2 [11 

where p., p2 are the fluids densities, a,2 is their surface tension and R is the tube radius. 
The characteristic interface curvature has been predicted by employing energy considerations 

(Brauner e t  al .  1996b). Stratification with plane interface is realized in systems of  6--+0, while for 
ev>> 1, the stratified configuration approaches a fully eccentric core-annular configuration (figure 
lc, g). Figure l(g) corresponds to ideal wettability of  the upper fluid, where the upper fluid spreads 
over the wall to form the annuli and the lower heavier phase forms a fully eccentric core at the 
tube bottom. The other extreme, shown in figure l(c), corresponds to 6.>> 1 and ideal wettability 
of  the lower heavier phase (Brauner e t  al .  1995, 1996b). Stratified configurations with curved 
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(e) concentric core 
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Figure 1. Schematic description of various configurations of stratified flows and core annular  flows. 

interfaces, which range between these two extremes of fully eccentric core-annular configurations 
are typical to systems of 0 < ~, < 1, but may also be realized in systems of low E6tv6s number 
due to evolution of hydrodynamic forces which spread one of the fluids over the tube wall. 
Hydrodynamic forces may also cause the core phase to detach from the wall surface to form an 
eccentric core-annular configuration (figure ld, f). When the core eccentricity reduces to zero, the 
concentric annular flow pattern (figure l e) is obtained. 

Eccentric and concentric core-annular flows were studied extensively, during the sixties and 
seventies, mainly in conjunction with hydro-transport of solid cylindrical capsules (e.g. Charles 
1963; Kruyer et al. 1967; Epstein et al. 1974; Garner and Raithby 1978) or viscous oil-water 
systems (e.g. Russell and Charles 1959; Epstein 1963; Bentwich 1970; Ooms 1972; Huang et al. 

1994). The possible transportation of viscous oils in pipelines, when the oil forms a core phase 
lubricated by a water annuli, is very attractive--the power requirements are comparable to that 
for pure-water flow. However, due to density differential (between the oil and water or between 
the solid capsule and the surrounding fluid) the core phase usually stabilizes in an eccentric position. 
The core eccentricity affects the system performance (Bentwich et al. 1970). Break-up of the top 
(or bottom) wall film due to the float-up tendency of light (or heavier) core phase results in 
stratification of the fluids (Hasson et al. 1970; Brauner and Moalem Maron 1992b). 

The problem of  laminar stratified flows with curved interfaces was tackled by Bentwich (1964, 
1976) and recently by Brauner et al. (1995, 1996). The latter presented a complete analytical 
solution for laminar stratified flows, whereby the interface curvature is obtained as an integral part 
of the solution, and is therefore, applicable to a variety of two-fluid systems. The solution shows 
that the interaction between the stratified layers and the resulting flow characteristics are 
significantly affected by the configuration of the interface. The relaxation of plane interface 
assumption in systems of finite 6 results in a large variation of the flow configuration, in situ holdup, 
pressure drop and the associated velocity profiles and shear stress distribution. The largest effects 
of the interfacial curvature on the two-phase flow characteristics are obtained as the stratified flow 
configuration approaches either one of the two extremes corresponding to a fully eccentric core. 

Thus, the solution of the flow equations for fully eccentric core-annular configuration is of 
importance for predicting the system performance and flow characteristics under limiting 
conditions of both and annular and stratified flow patterns and along the transitional boundary 
between these two patterns. However, the analytical solutions available either for eccentric core 
flows (Bentwich et al. 1970) or stratified flows (Bentwich 1960; Brauner et al. 1996, 1995) fail in 
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Figure 2. Bipolar coordinate system. 

the extreme of fully eccentric core-annular configuration. Moreover, close to this limit, although 
a formal solution exists, the computation becomes tedious (Brauner et al. 1995). The source of the 
difficulties is further elucidated below. Analytical solutions are available only for the case of fully 
eccentric fixed (rigid) cylinder (Caldwell 1930; Garner and Raithby 1978). 

This study is aimed at establishing an analytical solution for laminar fully eccentric core-annular 
flows. This solution further elucidates the range of variation of the two-phase flow characteristics 
associated with annular and stratified configurations and with the transition between these flow 
patterns. 

2. COORDINATE SYSTEM 

2. I. Failure of the bipolar coordinate system 

The bipolar coordinate system has been used extensively to solve single phase and two phase 
systems (e.g. Happel and Brenner 1965). Here however, a brief note is made to point out its 
limitations in describing the fully eccentric core-annular configuration. This is illustrated by 
presenting the bipolar coordinates for annular and stratified configurations (figure 2(a) and (b), 
respectively). 

Figure 2(a) corresponds to an eccentric core-annular flow configurations, whereby the tube wall 
is represented by ~ = fl while the two-fluid interface coincide with ~ = ct. Hence, the eccentric 
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co re - annu la r  configurat ion in the x-y domain  maps  into a semi infinite strip in the (q~, 4) domain  
defined by: 

Annula r  phase: /3 < ~ 4 :~ 

0 ~< q~ ~< 2~ [2.1] 

Core  phase: : ~ < ~ <  oc 

0 ~< 4~ ~< 2~ [2.2] 

where: 

e=c°sh-'I(R + RO-E2(R- RO 1 2 E R e  [2.31 

/ 3 = c o s h  ' [ (R + Rc)+ E2(R - [2.4] 

e 

E = R - R e  [2.51 

Here  R, Rc are the tube and core radius, respectively, and e is the (dimensional)  core eccentricity. 
Fo r  stratified two-phase  flows with curved interfaces, the flow domains  are confined by curves 

of  4~ = constant ,  as in figure 2(b). The pipe per imeter  and the interface between the fluids are 
isolines of  coordinates  q~, so that  the upper  section o f  the tube wall which bounds  the lighter phase 
is represented by ~b0, while the b o t t o m  of  the tube, which bounds  the heavier phase  is represented 
by 4 ) =  ~b0 + 7t. The  interface extends f rom P~ to P2. Thus,  the triple points  (TP), where the 
two-fluids interface meets the solid wall are at the two poles of  the b ipolar  system. The interface 
coincide with the curve o f  ~b = q0*, convex interface for q~* < x and concave interface for qS* > re. 
In part icular ,  q~* = x cor responds  to the case of  plane interface. Thus,  the two-phase  domains  m a p  
into two infinite strips in the (4), ~) domain  and are defined by: 

U p p e r  phase: - o o  < ~ < o o  

qb,, < qb < ~b* [3.11 

Lower  phase: - o o < ¢ < o e  

q~* < q~ < q~0 + re. [3.21 

I f  the b ipolar  system is used for the fully eccentric co re -annu la r  configurat ion,  then q~0 = 0, q~* = 0 
or q~0 = re, q~* = 2re. The case of  (~b0, q~* = 0) cor responds  to a lower heavier phase which forms 
the core phase  in contac t  with the tube bo t tom.  The  other  case of  q~0 = ~, q~* = 2x describes a fully 
eccentric core o f  the upper  lighter phase,  touching the upper  tube wall. In bo th  cases, the two-poles  
o f  the coordinate  system merge into a single pole at the system (single) triple point.  

When  ~b0, qS* = 0, the entire flow domain  of  annular  upper  phase in the bipolar  coordinate  
degenerates to a line, q~ = 0; for instance, it is no longer possible to distinguish between points  
located on the meridian,  a long ¢ = 0 f rom the upper  wall to the fluids interface. Similarly, when 
q~0 = r~ and ~b* = 2re the flow domain  of  the lower annular  phase degenerates into the line 4) = 2x. 

The  same p rob lem arises when the b ipolar  system is applied for eccentric annular  configurat ion 
(figure 2a). Fo r  a fully eccentric core, E -- 1 in [2], whereby bo th  e and/3 reduce to zero. Therefore,  
here too,  the flow domain  of  the annula r  phase  degenerates into a line, ~ = 0. Thus,  the bipolar  
system fails to describe the flow field for fully eccentric co re - annu la r  configuration.  

2.2. The unipolar coordinate system 
The  natura l  coord ina te  system to handle the geomet ry  of  a fully eccentric core is depicted in 

figure 3. Curves  of  cons tant  r~ represent  a system of  fully eccentric circles of  radius r~ and centered 
at (0, r0.  In part icular ,  r~ = Re represents the two fluids interface and r~ = R coincides with the tube 
inner surface. Curves  of  r2 = cons tant  represent  a second system of  fully eccentric circles, which 
are o r thogona l  to curves of  cons tant  r~, with radius r2 and a center at (r2, 0). Thus,  bo th  systems 
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of circles are tangent to the origin. The value of r2--,oe corresponds to the y-axis. The (r,, r2) 
coordinate system is actually a degenerated bipolar coordinate system, where the two poles merge 
into a single pole at the TP point (x = 0, y = 0), yielding a unipolar coordinate system. 

A more convenient coordinate system for solving the Laplace equation is obtained by considering 
the transformation which evolve from the reciprocal of r,, r2 and is associated with equal Lam6 
coefficients: 

.~. =, ,~  I-/exy (e~y-I ',~ 2 
- = L \ a p , / +  ~ , e p , / ]  - p~ -T- p~ [4.11 

1 2y 1 2x 
P ' = r - ~ = x  2+y2;  p2 r2 x 2+y2 [4.2] 

or: 

2p2 2p, 
X = p ~ + p ~ ;  y - p ~ + p ~ .  [4.3] 

. ,y  

, /  / 

\ 

r l - -~oo  ( I ' ~ x 
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Figure 3. Unipolar coordinate system. 
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The (p,, p2) coordinate system is similar to 'tangent circles' coordinates, presented in Moon and 
Spencer (1988). 

Figure 3 shows that half of the physical domain of a fully eccentric core-annulus geometry 
(which is symmetric with respect to p2 = 0) maps into a semi infinite domain in the (p,, p2) 
coordinates, where the two-phases domains are defined by: 

Annular (upper) phase: I/R < p~ < 1/Re; x >~ 0 

0 < p2 < ~ [5.1] 

Core (lower) phase: 1/R, < p, < o0; x >1. 0 

0 < P2 <~ ~ .  [5.2] 

3. THE FLOW EQUATIONS 

Consider the laminar flow of two immiscible fluids in a fully eccentric core configuration (figure 
3). For  steady and fully developed flow, the Stokes equations for the two-phases in the unipolar 
coordinate system (p~, p2) are: 

(p~ + p2)2 V~2v, ~2v, 1 1 ~p [6.1 l 
4 [-~-p 12+ a p ~ J =  - ~, az 

(p~ + p~)2 [~2V2 ~2V2] 1 c~p [6.2] 
4 L op~ + c3p~ j - #~ 8z 

where G, V2 are the phases velocities in the axial direction, p~, #2 are the fluids dynamic viscosities 
and Op/Oz is the pressure gradient in the axial direction. 

The boundary conditions which are to be satisfied are: 
(a) No-slip at the tube wall: 

(Vl)p,- l}R = 0 [7.1] 

(V,)~,~=, = 0; (V0,,2 .... = 0; [7.2] 

(Vz),,, = .~ = 0. [7.3] 

Note that boundary condition [7.2] relates to the triple point TP, where the phases interface touches 
the tube wall. This additional condition evolves due to the transformation from the physical finite 
flow domain to the mathematically infinite domain in the (p,, P0 coordinate system. 

(b) Continuity of velocities and shear stresses across the free interface, at p~ = pc = i/Rc: 

(G),,,-~c = (V2),,, =,,c [7.4] 

(~, ~v,) av A 
-~p~l,,,=o = @ eod,,=,/ [7.5] 

Boundary condition [7.5] is derived based on the orthogonality feature of the coordinate system 
and considering it is applied along the interface which is an isoline of p~. 

It is convenient to use the following non-dimensional form of the flow equations [6] and 
boundary conditions [7]: 

4 + a¢~ j = 1 [8.1] 

(~ + ~): ra~P~ a~?~7 
4 L a~ + -~-~J = ~ [8.21 
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(POe,=, = O; [9.1] 

(191.~)¢~=~ = O; [9.2] 

(I7":)¢, ~ =0 ;  [9.3] 

(V,)¢,=¢o = (I7~)¢,_¢5 [9.4] 

P -ff~2)~, = ~ = ~ ~3~2j~,.~ [9.5] 

where 

~1,2 = (pl,2)R; ~c = R/Rc; ]~ = ].~1/~2 

R - ' @  [ ! o ]  Vi,2 = VI.2/VR; V R -  #1 ~Z" 

The reference velocity, VR, is a characteristic velocity obtained with the annular (upper) phase 
flowing alone in the pipe under a pressure drop identical to that developed in the two-phase flow 
system. 

4. VELOCITY PROFILES 

The general solution of the non-homogeneous set in [8] is composed of particular solutions l?,p, 
I~2p and homogeneous solutions l?,,, ff2h. In view of the non-homogeneous terms in [8], the following 
particular solutions are taken: 

/~ [11] 1 " I72. - :2 • 

The solution of the homogeneous two-dimensional Laplace equations can be obtained in the form 
of the following Fourier integrals (see appendix A): 

~0 °c [12.1] 

[12.2] 

where cb~(~o, ~), q~ff~o, ~2) are the spectral functions [A5.1] and [A5.2]. 
Combining [12] with the particular solutions [11] yields the general 

non-dimensional velocity profiles in the two phases: 

1 1 (1, + 1 2 )  

solution for the 

[13.1] 

[ '  '] [13.2] 
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where: 

II z 

L = 
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~ ' [  (1 ~f i ) (1  - ~0 1 " 1 + (1 -- 12t)~ ~-~=~5<°- (1 + fi) e-'";' cos(o)~2) d¢~; 1 <~ ~ ~< ~¢ 

f [- ( 1 - , 5 ) ( ~ - l ) e  <~, 2~o<,, -I . ~ ,  

f " I  2 ( 1 - ~ < )  l e  <"~'cos(o)~)do); ~ < ~ < o o , .  [14] L =  1 + ( 1  --f i)  e 2(' ~<, . . . .  (1 + f i )  

5. SHEAR STRESSES 

Once the problem is solved for the velocity profiles, the local shear stresses in both phases 
domains can be derived. Of  particular interest is the shear stress distribution over the tube wall 
and over core interface. These interfaces are isolines of  coordinates ~ in the (~l, ~_,) orthogonal  
coordinate system; Hence, the wall shear stress is obtained by: 

~l ( ( ~ V l ~  

= L ,  

fw - ~ -  2 f0 * [ ( { ~ - l ) ( l + f i )  ] de° [15] "oR ~2 + 1 + (~2 + 1) o9 cos(o)~z)e ,o ~c - 2 + (1 - fi) e 2<''1 ~<) - (1 + fi) 

where 

R~p H -  2R 
r . = 5 O ~ .  ~ ~ 7 + ~  

The shear stress at the fluids interface is given by: 

[16] 

= L ,  - 

T. -- ~ + ~ + ~¢ (l -- /i)e 2~)̀1 ~') -- (1 + fi) [17l 

6. FLOW RATES AND PRESSURE DROP 

The volumetric flow rates of the fluids can be obtained by integrating the (dimensional) velocity 
field Vt, V2 over the corresponding flow area Al and A2: 

Q~ = 2VR d~2 17~(~, ~2)J(~, ~2) d ~  - ~R4 @- (~,(~c, fi) [18.1] 
' 8g~ (?z 

Q2 = 2VR d~2 I72(~,, ~2)J(~,, ~2) d~, - ~R4 ~?p (~2(~, fi) [18.2] 
8#2 cgz 

where J(:,.~:) is the Jacobian of  the transformation and is given by: 

c?(x, y )  _ H~,H~, - 4R2 [19] 
J(~,, ~21 - JiZ,; ~1 -- (~ + ~1~ 



LAMINAR TWO-PHASE FLOW 531 

The non-dimensional functions Q, and Q2 represent the flow rate enhancement of  each of the 
corresponding fluids; namely, the ratio of  the actual volumetric flow rate of  the fluid to its rate 
for single phase laminar flow in the pipe under the two-phase pressure gradient. 

The functions Qj, Q2 are obtained by: 

0 . , ( ~ ,  fi) = 64  d~2 1 1 (I, + I2) . 2, + ~ ~ (~ + ~)~ [2 o. l ] 

Q2(~c, fi) = 64 d~2 1 1 d~, [20.2] 

Obviously, the ratio between the actual flow rates of the two fluids is independent of  the pressure 
drop: 

Q , .  fi_l 0i 0 = Q22 - Q2" [21] 

In the case where the fluids viscosities and flow rates prescribed, [21] with [20.1] and [20.2] can be 
utilized to solve for the core diameter, Rc = R / ~  and the corresponding in situ holdup of  the core 
fluid, ,~2 = 1/~. Then, either of [20.1] or [20.2] can be used to calculate the system pressure drop. 
The non-dimensional pressure drop (normalized with respect to the superficial pressure drop 
obtained for laminar single phase flow of  either one of  the fluids) evolves from [18]: 

dP, _ (dp/dz)  = O?'(~c, fi) [22.11 
d Z  (dp/dz), ,  

dfi2 = (.dp/dz) = 0_2'(~, fi). [22.2] 
d Z  (dp/dz)2~ 

Note that the average wall and interfacial shear stresses, which can be obtained by integrating the 
corresponding expressions for the local shear stresses, [15] and [17], respectively, 

~. 2 r ~  ZRfw d~2 [23.1] 
= ~ 3o (1 + ~) 

~c ZRfc d¢2, L = T  ( ~ + ~ )  [23.2] 

can also be simply derived based on overall momentum balances over the core and annular phases. 
These two momentum balances yield: 

Zw d/31 4#~Q] 
rl~ d Z '  z l s -  ztR 3 [24.1] 

{c vJ/2 dff2 4//2Q2 [24.2] r2~=A2 ~ ;  T2s-- ~R 3 

where z~s, r2s are the superficial wall shear stresses obtained with single phase flow of  the annular 
and core phase, respectively. 

7. RESULTS AND DISCUSSION 

The solution of  two-phase laminar flow in a fully eccentric core annular configuration is 
determined in terms of  two parameters; the viscosity ratio of  the two fluids, and the flow rates ratio 

= Q,/Q2. Given these two parameters, all the local and integral flow characteristics associated 
with a fully-eccentric core configuration can be obtained. Note that fi < 1 corresponds to a viscous 
core flow lubricated by a less viscous fluid flowing in the annulus, which is of practical interest 
as a possible way for pressure drop and power reduction in the transportation of  viscous oils. The 
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Figure 4. In situ holdup in fully eccentric core flows--effect of fluids flow rates and viscosities. 

opposite situation of fi > 1, corresponds to a flow of the less viscous fluid in the core as in gas-liquid 
annular two phase flows. The case of fi > 1 is also of practical interest in liquid-liquid systems, 
when the viscous fluid is introduced into the annulus in order to protect the pipe wall from 
corrosion or scale deposition effects (Hasson and Nir 1969; Hasson et al. 1970). 

Figure 4(a), (b) show the holdup of the core fluid (/~2) and annular fluid (A~) for a wide range 
of fluids viscosity ratio as a function of  the Martinelli parameter. Note that fiQ is the Martinelli 
parameter for laminar two-phase flows since: 

2¢2 _ (dp/dz),~ #, Q~ [25] 
(dp/dz)2~ ~2 Q2 

Following the trends of the annular phase holdup ,41, indicates that for relatively high viscous 
annular phase, fi > 10, a single parameter/~O is practically sufficient to represent the distribution 
of  the two-phases. The region of/1~--+ 1 represents practically single flow of the viscous phase with 
an eccentric thin core of  the less viscous phase. This region o f /11~  1 is preferably demonstrated 
by the complementary holdup of  the core phase,/12, as in figure 4(b), where the continuous thinning 
of  the core with increasing fiQ can be followed. 

By reducing the viscosity ratio, the curve of fil = 1 corresponds to two immiscible fluids of 
identical viscosities which in laminar two-phase flow yields the same characteristics as those 
obtained in single phase pipe flow (the density ratio has no effect). For fi < 1, the region of practical 
interest is that of/l~ << 1, which corresponds to lubricated viscous core flow. As is indicated in figure 
4(a), this region cannot be represented solely by the Martinelli parameter, in which case the core 
hold-up is a function of both (fiQ) and (rio 

The system pressure drop is shown in figure 5(a) and (b) for the cases of fi > 1 and fi < l, 
respectively. Note that in both cases the system pressure drop is normalized with respect to the 
superficial pressure drop of the more viscous phase. Thus, both dP,/dZ and dP~/dZ represent in 
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these figures the factor of pressure drop reduction associated with introducing a second less 
viscous phase. When the annular phase is the more viscous one (figure 5a), the normalized 
pressure drop is practically a function of the Martinelli parameter only. For this case, where the 
less viscous phase is not in direct contact with the tube wall, there is no potential for pressure drop 
reduction as dPj/dZ does not undershoot the value of 1.0 (except for f i Q ~  2, where 
dP,/dZ ,,~ 0.95). 

The other physical situation of lubricated core flow is demonstrated in figure 5(b). Given a flow 
rate of the viscous phase, Q2 and fi, the introduction of a small amount of the less viscous phase 
(low Q~/Q2) affects initially a decrease of the two-phase pressure drop. However, eventually, 
increasing the flow rate of the lubricating phase yields an increase of the pressure drop, where the 
pressure drop factor exceeds the value of 1.0. As shown in this figure (and also noted with reference 
to figure 4b), the region of lubricated core flow requires two parameters (fi and (~) to determine 
the system performance. The zone of single parameter in figure 5(b) corresponds to a high 
Martinelli parameter, fi(2 >> 1. In this zone, the holdup of the viscous core is less than 5% and 
dP2/dZ ~-fiQ. It practically corresponds to single phase flow of the less viscous phase, where 
dPt/dZ ~ 1 and is therefore of limited interest. The lubrication zone is bounded by a threshold 
Martinelli parameter [fiQ]dP2/dz= ~ = 0.64 for fi < 10 -2. Hence, the lubrication region is scaled with 
fi; given the flow rate of the viscous phase, Q2, the range of flow rates of the less viscous phase 
which yields a lubricating effect increases with increasing the oil viscosity. 

The lubrication zone is, however, better described by plotting the pressure drop factor vs the 
flow rate ratio. Figure 6(a) shows that the potentials for pressure drop reduction and for power 
saving both increase with increasing the core viscosity. These are bounded by a minimal value of 
/32~0.025 approached for f i~0.  However, the range of flow rates where the maximum lubrication 
effect is achieved becomes broader as the core viscosity increases. Figure 6 shows that practically, 
the optimal operational conditions are independent of the fluids viscosity ratio and corresponds 
to Q~/Q2 ,,~ 0.1 ( ~  10% of the lubricating phase). 
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8. COMPARISONS WITH CONCENTRIC CORE AND OTHER TWO-PHASE MODELS 

Concentric and fully eccentric annular flows represent two extremes which are of  practical 
interest with regard to the performance of core flows. These two extremes are compared here in 
order to set the bounds for the basic characteristics of  in situ holdup and pressure drop reduction 
in core flows. For  the sake of completeness, the equations describing the performance of concentric 
annular flow (e.g. Russell and Charles 1959) are given here in terms of the non-dimensional 
variables used in this study: 

, i , + ( ,  + a = ~  ; a -  [26.1] 
l t J (~-DQ) ~ 1 -- A2 

dP~ 1 
d~  = [26.2] 

"~I l +2( '~ '  - 1) ] / 2  

For highly viscous concentric core, /,i<< 1 [26] yields: 

A2 = 1 . ,  di~: _/2(2 0 + 1) 2 [27] 
20+  1 dZ 40 

Note that for a concentric configuration, the average velocity of the annular phase is always smaller 
than the average velocity of  the core phase, independently of the fluids viscosity ratio and flow 
rates (V~/V2 = aQ1/Q2 < 1). This ratio, V~/V2, is bounded by the value of 1/2, which is approached 
for large Q a s / 2 ~ 0 .  This is not the case with eccentric core flows. Figure 7 shows that when the 
core is at a fully eccentric position, the core phase is slowed down. Consequently, the annular phase 
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velocity may exceed the core velocity, and for/7 << 1 the annular phase is the faster one (except for 

0<<J). 
Figures 8 and 9 demonstrate the effect of eccentricity on the performance of core flow systems 

with either/~ > I o r / /<  I. In viscous core flow, the pressure drop in the concentric configuration, 
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Figure 8. Effect of  core eccentricity on the pressure drop  and holdup in viscous core flow, /~ < 1. 
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(dP/dZ)c  is always lower than that of the eccentric configuration (figure 8a). Note that the pressure 
drop ratio is also the ratio of the pressure drop reduction factors that can be achieved in these 
two extremes. For  highly viscous concentric core, the lubrication region is wider, 0 </~(2 < 1 
(compared to 0 </~Q < 0.64 for fully eccentric core). In concentric core flows, the pressure 
reduction factor is proportional to 17, while with a fully eccentric core, the pressure drop 
reduction factor is bounded, as shown in figure 6. Therefore, the pressure drop ratio in figure 8(a) 
decreases with increasing the core viscosity (/2 << 1). Figure 8(b) shows that the viscous core holdup 
in concentric core flows, A2c represents a lower bound for that obtained for the core in an eccentric 
position. This is expected since the proximity of the tube wall slows down the viscous core and 
a higher flow area is needed to transfer the input flow rate. Note that the decline of the core holdup 
ratio to zero corresponds to high flow rates ratios, beyond the operational conditions which are 
of interest for viscous core lubrication. In the lubrication region, the effect of the core eccentricity 
on the holdup is moderate. 

Another reference system which can be used to scale the core holdup in the limit of/2--,0 (highly 
viscous core) is the Couette flow of a fully eccentric cylindrical capsule (Epstein et al. 1973); In 
the Couette flow model, the fluid in the annulus is dragged by an eccentric capsule which is moving 
at a constant velocity, V~, with zero axial pressure gradient. In the limit of a fully eccentric capsule, 
the solution of Epstein et al. (1973) yields: 

i i 2 -  I (1 + ~)2 [28] 

There is a basic difference between this capsule model and the present core flow model in the 
limit of fi ~0 .  The rigid capsule is sliding over the tube wall at the capsule velocity, thus the no-slip 
boundary condition [9.3] at the capsule/wall contact point is not satisfied by the fully eccentric 
capsule model. 

The dashed curve on figure 8(b) represents the ratio of  the capsule cross section [28] to the holdup 
of a fully eccentric core in the limit of/~---,0. The impact of the no-slip boundary condition on 
slowing down the highly viscous core phase is reflected by this curve, as the holdup ratio of these 
two models is always smaller than 1. 
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Figure 9 shows that for the opposite case of/2 > 1, where the viscous liquid forms the annular 
phase, the core phase holdup is still the lowest at concentric configuration, but the system pressure 
drop is higher than that obtained for fully eccentric configuration. The effect of the core eccentricity 
on the pressure drop is most pronounced around g 2 = fiQ = 10, but is limited to about 35% for 
fi << 1. This extent of pressure drop increase is due to the reduction of the core phase holdup ( ~  14% 
reduction for g 2 -  ~ 10, figure 9b), which for/2>>1 is equivalent to the effect of reducing the tube 
size in single phase Poisuille flow (see appendix B, case b). 

The effects of the core eccentricity on the optimal operational conditions in lubricated core flows 
(/2 < I) are summarized in figures 10 and 11. As noted above, the potentials for pressure drop 
reduction and power saving in concentric core flows increases with increasing the core viscosity. 
The phases flow rates ratio, which yields the maximum values of pressure drop and power reduction 
(figures 10a, 1 la) are shown in figures 10(b) and 1 l(b), respectively. For concentric core, the optimal 
flow rates ratio increases monotonously with the core viscosity and approaches the value of Q = 0.5 
for/7 ~0 .  In this limit of rigid core, the core phase occupies half of the tube cross section, figure 
10(c). Maximum power saving is achieved with Q = 0.3, where A2 = 0.62. With fully eccentric core, 
the maximum pressure reduction and power saving get saturated for f i ~ 0  at a level of 0.025. But 
these optimal conditions are achieved with lower amounts of lubricating phase: Q ~ 0  and A2--' 1 
a s /240 .  From the practical point of view, however, a certain amount of lubricating phase must 
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Figure 10. Maximum pressure reduction---effect of fluids viscosities on the optimal operational conditions 
in stratified flow, concentric and fully eccentric core flows. 
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always be added. In view of figure 6, these optimal operational conditions are as well reached with 
(~-~ 0.1. 

It is of interest to note that at this extreme o f / ~ 0 ,  the characteristics of fully eccentric core 
flow resemble those obtained with stratified flow between two infinite plates; In this simple 
geometry too, the optimal flow rate of the lubricating phase and its holdup approach zero in the 
limit of highly viscous lubricated phase (Brauner et al. 1996a). The minimal pressure drop factor 
that can be achieved in the two plates geometry is, however, limited to 0.25, 10 times higher than 
that achieved in a fully eccentric lubricated core flows (75% pressure reduction in plates geometry 
compared to 97.5% reduction in a configuration of a fully eccentric core). 

When the core phase adheres to the tube walls, the core flow configuration may be destroyed 
and stratification takes place with either curved or plane interface (see figure 1). Analytical solutions 
for laminar stratified flows with plane, concave or convex interfaces have been recently presented 
by Brauner et al. (1995, 1996a). As the contact area between the viscous phase and the tube wall 
increases, the potential for pressure drop reduction by adding a lubricating phase is obviously 
reduced. For  comparison, in stratified flow with a plane interface the maximal achievable pressure 
drop reduction is only about 30% (the minimal value of pressure drop factor is 0.71). This value 

is approached when the viscosities of the two layers differ by more than two orders of magnitude, 
For such a high viscosity gap, the Martinelli parameter for which the maximum pressure reduction 
is achieved and the corresponding layer thicknesses are both independent of the fluid viscosity ratio: 
~2 = ] ~ 0  "~ 0.007, ,,1~ = 0.106 (the layer thickness of the lubricating fluid is h/D = 0.19, Brauner et 
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al. 1996a). Therefore, in the stratified configuration, in order to achieve the maximum reduction 
of pressure drop, higher oil viscosity (lower fi) requires higher Q~/Q2, hence higher flow rates of 
the lubricating phase (dotted curve in figure 10b). 

When the interface of the lubricating phase attains a convex shape (figure lh), the contact area 
between the viscous phase and the tube wall further increases, and the potential for pressure drop 
reduction further diminishes. Eventually, when the lubricating phase forms a core at a fully 
eccentric position (figure lg) the pressure reduction is limited to a few percents (as noted with 
reference to figure 5a), which is of no practical value. 

9. IMPLICATIONS TO SOLUTIONS OF STRATIFIED FLOWS WITH CURVED 
INTERFACES 

The effect of the interface curvature on the stratified flow characteristics has been recently studied 
by Brauner et al. (1995) and Maron et al. (1995). Analytical solutions for the 2-D velocity profiles 
and shear stresses distribution in the two-phases have been obtained in the bipolar coordinate 
systems in the form of Fourier integrals. The local and integral flow characteristics have been 
calculated for concave or convex interfaces ranging from nearly fully eccentric core of the lower 
phase to nearly fully eccentric core of the upper phase (figure 1). 

As explained in section 2.1, the bipolar coordinate system fails in the limit of fully eccentric core 
annular configuration. When this limit is approached, the calculation becomes tedious. 

The difficulties can be understood in view of figure 12, where the spectral functions, which are 
needed for carrying out the Fourier integrals in the bipolar coordinate system, are shown for a 
particular case of f i--0.01. In the bipolar coordinate system, the fully eccentric viscous 
core-annular configuration is approached when ~b0--* 180 ° and ~b*-+360 ° (see [3.2] and figure 2b). 
Note that ~ * =  180 ° (and any ~b0) corresponds to stratified flows with plane interfaces. The 
widening of the spectrum of the lubricating phase when approaching the fully eccentric core 
configuration (figure 12b) introduces convergence problems and increases dramatically the 
computational effort and time. Consequently, the results obtained in this limit may be deficient. 
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Figure 12. Spectral functions in the bipolar coordinate system, fi = 0.01. 
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For comparison, the spectral functions for /7 = 0.01 and a fully eccentric core configuration, 
which are obtained in the unipolar coordinate system are shown in figure 13. The narrow spectrums 
for both phases indicate a clear advantage of the unipolar coordinates in rendering a solvable 
problem. 

Hence, the independent solution obtained in this study for a fully eccentric core annular 
configuration is useful also for studying the effect of the in situ phases distribution on the flow 
characteristics, with interface configurations which are encountered in the transition between 
stratified flow with curved interface and eccentric annular flows. 
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A P P E N D I X  A 

Solution of the Homogeneous Laplace Equations 

The particular solutions IT~p, I~2p Ill] satisfy boundary conditions [9.2] and [9.3]. Hence the 
homogeneous set of equations and corresponding boundary conditions, which are to be solved, 
read: 

~2F~, c ~2ffl. 
t ~  + ~ = 0 [AI.1] 

a{f + ~ = 0 [A1.2] 

(I7",h)~, =l = -- 1 1 + {~; [A2.1] 

(P,,)<,=~ = 0; (P2,)~=~ = 0; [A2.2] 

(PZh)~, = ~ = O; [A2.3] 

(1 -- fi). [A2.4] (P,~)~, =~ = (~,)~,  =~ - ~ + ~ '  

(ee,4 (ee,4 
/~ \ a& J~, =< = \ - ~ 2  J,, =" [A2.5] 

Substituting the Fourier integrals for V~h [12.1] and ffzh [12.2] in [A1] and [A2] yields the following 
relations for the spectral functions: 
From [AI.I]: 

d2qh 
d~  ~ = 0 [A3.1] 
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From [A1.2]: 

From [A2.1]: 

From [A2.3]: 

From [A2.4]: 

From [A2.5]: 
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d2~i~2 
d ~  ~2 = 0. [A3.2] 

(6o, 1) = - e  '". [A4.1] 

ch2(~o, c~)  = 0.  [ A 4 . 2 1  

q~2(o0, C~) - ~b,(m, ~c) = e ~". [A4.31 

[A4.4] 

Note that boundary condition [A2.2] is met by retaining only the cos(~o{2) terms in the Fourier 
integrals [12], thus satisfying the symmetry of the velocity profiles about the meridian at 42 = 0 (the 
vanishing of the l?~h, l?2h as ~2---+oQ) is an underlying requirement for applying [12]). 

The spectral functions which solve [A3] with boundary conditions[A4] read: 

1 [(1 - f i )  e 2'' -e~' . . . .  (1 + f i ) ~ c ] + ( 1  - / ~ ) ( ~  - 1)e 2'°< -ca e ,.,< [ a 5 . 1 1  
,/,,(o), ~,) = ~,. (1 - / ~ ) e  2" - ~ " - ( 1  + ~) 

(b,(~, 3 t )  - -  ~ [2 {~  + f i  - -  1 - -  (1 - -  _fi)e 2" - ~a''] e_,o~, 
~. [ ( -  ( l + ~ ) ]  " [A5.21 

A P P E N D I X  B 

Convergence to Known Solutions 
The solutions [13] and [14], obtained for the velocity profiles in two phases which flow in a fully 

eccentric core-annulus configuration can be further validated in view of their convergence to single 
phase Poisuille flow in the limits of/~ = 1 and fi--+ m, and to the solution for flow between fully 
eccentric cylinders when f i~oc.  

(a) Equal fluids viscosities, fi = 1. For this case: 

1~= ~, " /2=0;  ¢~ + 4~' 

Hence: 

I3 - ~ + ~2' [BI] 

- c~ + ~_~ 

Utilizing the relation between cylindrical coordinate r and (~,, {2): 

[B2] 

( R y  ( R )  2 ( Y ) 2  4{2 i 2~, 12 = + - 1  - ( ~ + ~ ) ~ +  ( ~ + ~ ) ~  1 [B3] 

it follows that: 

1- -3 ,  1 (  r 2 ) 
( { ~ + { ~ ) -  4 l - - ~  . [ B 4 ]  



Thus, for fi = 1 

R2 dp 1 -  . 
V = ~'VR - 4~ dz -~ 

(b) Rigid annulus, f i~oo.  For this case: 

i~ - ~ + ¢~. 

Hence: 

¢~ + ~ - 

For cylindrical coordinates centered at the core center: 
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the solution in [13] yields the well-known Poisuille flow in a tube of ratius R: 

[ B 5 ]  

[B6] 

[B7] 

[ B 8 ]  

which yields: 

¢~+¢22 - ~  - ~  . [B9] 

When [B9] is substituted in [B7], the velocity profile corresponding to Poisuille flow in a pipe of 
radius Rc is obtained: 

I1"2= ~'2VR= R--J-2~ dP [ r21 
4pzdz 1 - ~  [B10] 

(c) Rigid core, fi = 0. This case corresponds to a fluid of viscosity p~ flowing in a fully eccentric 
annuli formed between two fully eccentric cylinders. The rigid core velocity (in contact with the 
stationary tube wall) is obviously zero, I/'2 = 0. Substituting fi = 0 in [13] and [14] yields: 

1 1 ~e2~'-~' - ¢ . . . .  ¢' ' e2,o,, - ~c,_, _ _ + 1 ¢ - 1 ~ - -  cos(~o~2) do) [B11] 

which can be further rearranged to yield: 

1 ~ [ e  -'°~° sin h[co(~, - 1)] e -'~ sinh(co(¢c - ~,)]-] , . .  
I7, _ ¢~ + ¢22 L -~ s~n 7~[--~-~--]~ + ~ ] ~ 2 5  ]]] j c°s t  °2¢:) dco. [B121 

The form [B12] is identical to the solution obtained by Garner and Raithby (1978) for the case 
of fully eccentric capsule (in their notation, 42 = 2R~,*, ¢~ = 2Rt/, co = n/2R). 

For R ~ 0 ,  ~ o o ,  [B12] reduced to: 

f f  1 - ~ [B13] 1 e -~¢' cos ~ 2  dw ~ + ~ v, - ~ + ~.~ - - -  

which is identical to the expression obtained for the velocity profile of single phase Poisuille flow 
in the (~,, ¢2) coordinates, [B2]. 


